Robust Morphologic Analyzer for highly inflected Languages

Andrés Tomás Hohendahl ^{1,3}
José Franciseo Zelasco ^{1,2}

- 1 Lab. de Estereología y Mecánica Inteligente Facultad de Ingeniería, U.B.A.
- 2 INTIA Facultad de Ciencias Exactas, UNCPBA
- 3 Instituto de Ingeniería BioMédica, U.B.A.

Languages & Dictionaries

- Inflected Languages
 - Slighltly Inflected:
 - English \sim 80k roots (x2.3) < 200k total
 - Highly Inflected + Parasynthetic
 - Spanish \sim 80k roots (x10k) > 3000M total
 - Huge Word-Space 1.0 E22 words for 15 letters
 - Similar for Polish, French, Italian, Portuguese, etc.

Languages & Dictionaries

- Lexical Word analysis (goals)
 - Minimum stored amount of data
 - Obtain Semantic and Grammatical Information
 - Tolerate Misspelling & Suggest Corrections
 - Do all above: efficiently

Used Method

- Store word-Roots along with applicable Rules & base Tags
- Each Morphologic Rule contains Grammatical & Semantic info.
- Fast in-memory data structures: (Patricia-Trie y Tst)
- Recursive & Greedy Algorithm: Seek / Lemmatize
- Intelligent Spelling Suggestion: min. seek / max. probability

Languages & Dictionaries

Language Recognition

Statistic

- Fast (few operations)
- Compact Datasets ~5kb/language
- Good Recall (F-Score >95%)
- Reduces Unnecessary Seeks
- State of the Art in 2004

• Hohendahl, A.T. Zelasco, J.F. WICC 2006 (art.694)

ES- Distribución de diletras por: inicial, segunda (48424words)

Other Methods
Proprietary (MS, etc.)
Brute Force (high cost)

• Padró, Lluís/Munsa. TALP 2004 UPC

Efficient Index Structures

- SQL / TSQL / CQL (high level)
 - → Inefficient for partial words
 - → High cost (resources, licensing, maintenance, TOC)
- Binary Trees, M-Trees, Radix-Trees
 - → Less efficient for partial-matching
- ✓ Tries & TST (Ternary Search Trees)
 - → Linear Time O(word length)
 - → Useful for error detection/correction
 - → Easy to finding Sub-Ranges for Similarity
 - → Flexible: Linkable & Combinable

Reversible Morphologic Rules

- Spanish vocabulary using enhanced ASPELL compression
 - ~ 3.900 inflection rules (300 prefix/infix + 3600 suffix)
 - ~ 200 Semantic/Grammatical Attributes.
 - ~ 79.000 Root words (Lemmas)
 - ~ 300 kb compacted (*.zip)

Yields → >5 Million exact recognizable words

- ASPELL.org (GNU)
- + Phonetic Guess Sampa (Sound-Like)
- + Enhanced Spell Correction (statistic-guess)
- + Morphologic Guessing (statistic + rules)
- + Parasynthesis (multiple combinations)

→ Huge >5000 Million word space! (not including correctable mis-spells)

Morphologic Analysis Algorithm

Pseudo-Logic Diagram (very simplified) for Finding a Word

```
if (word in Roots) → found

Acumulate word in [seePrefix]

foreach Affix Rule in Suffix-Rules

if Rule Applicable to word → strip-Suffix

if (stripped in Roots & bears Rule)

→ found

else accumulate in [seePrefix]
```

foreach word in [seePrefix]

foreach Affix Rule in Prefix-Rules

if Rule Applicable to word → strip-Prefix

if (stripped in Roots & bears Rule)

→ found

Spell Error Detection-Correction

- Using Bigram & Trigram Freq. from Language Detector.
- Heuristics to find best fitting replacement.
- Reduced seek count.
- Detects promptly unusual zones.
- Uses language specific rules.
- Usually finds the best "human" word in the first (few) trials
- Shares TST/Tries with Analyzer.
- Simply based on: Poor-Man-Speller

Dictionary + Rule Editor/Utility

Runs on Windows (.NET 2.0 C# Platform)

Features: Builds Rules Test Rules **Analyzes words Expands words Benchmarks Imports IFFIX ASPELL Word-List** Does all kind of word/tag operations

Phonetic Similarity Module

New Algorithm

- Measures what humans "think-sounds" written text.
- Based on analogical phono-articulartory model (uses non-linear kernel on: pitch-vibration, nasal-lingual position/occlusion + openness + fricative energy)
- Measures Distance among words with a Real Number
 0..max where (1.0 is the mean phonemic distance)
- Correlation with human-perception over 85%.
- Establishes a good parameter for spell correction delivering the correct word even with worse misspells,

Example:

VAHIEMA → BALLENA

(only 1 guess d~0.69 0.001sec)

A. Hohendahl, S. Zanutto, A.Wainselboim SLAN 2007

Phonetic Similarity Algorithm

Highlights

- Very little literature found on the subject.
- Outperforms classic Lexical distance for cognitive perception experiments and measures (Levenshtein, etc.)
- Very Fast (over 30k/second)
- Small Memory usage

Windows Utility for Testing

Benchmarking

Fast-Find

Best-Fit

Processing

Word Lists

Making

Word Matrix

Features & Applications

Features

- Find best-human like guess on mistyped or bad orthographically written (but sounding like) text.
- Delivering EAGLES 2.0 compatible, semantic-extended tags
- Uses Open-source Dictionaries, and spell checkers so it's adaptable to many languages based on free existing data.
- Delivers N-alternative Tags, ordered by phonetic distance.
- Detects foreign words (tagging language) + capable to handle many mixed languages (one must be principal)

Real World Human Computer Interface (HCI)

- Fast and Lightweight, engineered to fit into small appliances.
- Recognition + Guessing of parasynthetic O.O.V. (Out Of Vocabulary) in Scientific Text, Medical Records, etc.
- Robust Open-Lexicon Dialog System (free text)
- Automatic Speech Recognition (ASR) with huge-open Lexicon
- Teaching Aid / Support (Intelligent conversational agents)
- Artificial Understanding, AI, Context-based tagging, etc.

Future Research Lines

H.C.I.

- Cognitive Modeling for fast Storage-Retrieval
- Spanish Dialog Subsystem
 - Robust GLR Compiler (Tomita-Like w/Scrödinger Tokens)
 - Cognitive Run-Time
 - Implied verbal Logic (Math, Set & Boolean Logic)
 - Simple Scientific Math (numeric + algebraic)
 - Scientific Units Cognitive Operations
 - Artificial Shallow Understanding
 - Information Extraction on OOV. & mistyped words (morphologically correctly constructed, even with errors)
 - Conversational-Space Resolution (Me-You-They)
 - On-The Fly Anaphora Resolution & used as context
 - Ontology Driven Contextual Conditional Parsing

Questions?

Thank you

(dissertant)

José Francisco Zelasco

jfz@fi.uba.ar

Andrés T. Hohendahl andres.hohendahl@fi.uba.ar